Neural Network Alternatives to Convolutive Audio Models for Source Separation

Shrikant Venkataramani*
Cem Subakan*
Paris Smaragdis**

*University of Illinois at Urbana Champaign
#Adobe Research

MLSP 2017
Motivation

• Supervised single channel source separation
 • Using models trained from clean sounds

• Dominant approach
 • Non-negative Matrix Factorization (NMF)
 • Interpretable, reusable models

• Non-negative Auto-encoder (NAE)
 • Interpreting NMF as a neural net
 • Reusable models with Significant improvements

• Modeling temporal dependencies in spectrograms
 • Incorporate temporal structure into NAE models
 • CNN’s, RNN’s, LSTM’s etc.
Learning an NMF model

- Learning spectral bases from spectrograms.

\[X = W \cdot H \quad X, W, H \in \mathbb{R}^+ \]
NMF in action

• Analyzing piano notes
NMF for Non-stationary sounds

- Convolutive NMF
 - Modify spectral-bases to be matrices
 - Bases capture snippets from spectrogram
- Significant model changes
 - Difficult to model silences

![Magnitude Spectrogram](image)

Components

Activations
Non-negative Auto-encoder

- Interpret NMF as a neural network

\[
\begin{align*}
 \mathbf{X} &= \mathbf{W} \cdot \mathbf{H} \\
 \mathbf{H} &= g(\mathbf{W}^\dagger \cdot \mathbf{X}) \\
 \hat{\mathbf{X}} &= g(\mathbf{W} \cdot \mathbf{H}) \\
 g(x) &= \max(x, 0) \text{ or } |x| \text{ or } \ln(1 + e^x)
\end{align*}
\]
NAE in action

- Bases can take negative values

\[KL(\mathbf{X} \| g(\mathbf{W} \cdot \mathbf{H})) + \lambda \| \mathbf{H} \|_1 \]

\[g(x) = \ln(1 + e^x) \]
Convolutive models

- Cross-frame patterns in spectrograms
 - CNN’s naturally deal with sequences
 - Spectro-Temporal models

- CNN-CNN auto-encoder (CCAE)
CCAЕ in action

- Encoder acts as a matched filter
- Bases allow negative values
 - Models silence easily

\[g(x) = \ln(1 + e^x) \quad KL(X \| \hat{X}) + \lambda \sum_{j=1}^{K} |h_j| + \mu \sum_{j=1}^{K} ||W_j||_1 \]
Extensions

- Difficult to extend NMF models
 - Easy to extend neural nets
- Encoder acts as a matched filter
 - Inverse of FIR is IIR
 - Use RNN’s (LSTM’s) in the encoder
- RNN-CNN auto-encoder (RCAE)
CAE Source separation

- Estimate models for each source
CAE Source separation

- Estimate the contribution of the sources in the unknown mixture using trained models

1. Training data for source 1
2. Training data for source 2
3. Source 1 in unknown mixture
4. Source 2 in unknown mixture

\[X_1 \rightarrow \sum_j \mathbf{g}(\cdot) \rightarrow \sum_j \mathbf{h}_1(1) \rightarrow \mathbf{h}_1(1) \ast \mathbf{W}_1(1) \rightarrow \mathbf{g}(\cdot) \rightarrow + \rightarrow X \]

\[X_2 \rightarrow \sum_j \mathbf{g}(\cdot) \rightarrow \sum_j \mathbf{h}_2(1) \rightarrow \mathbf{h}_2(1) \ast \mathbf{W}_2(1) \rightarrow \mathbf{g}(\cdot) \rightarrow + \rightarrow X \]

\[\vdots \]

\[\sum_j \mathbf{g}(\cdot) \rightarrow \sum_j \mathbf{h}_K(1) \rightarrow \mathbf{h}_K(1) \ast \mathbf{W}_K(1) \rightarrow \mathbf{g}(\cdot) \rightarrow + \rightarrow X \]

\[\vdots \]

\[\sum_j \mathbf{g}(\cdot) \rightarrow \sum_j \mathbf{h}_K(2) \rightarrow \mathbf{h}_K(2) \ast \mathbf{W}_K(2) \rightarrow \mathbf{g}(\cdot) \rightarrow + \rightarrow X \]
CAE Source separation

• Goal: Estimating network inputs (source spectrograms)
 • Given the source models
 \[X = X_1 + X_2 \]
 • Gradient-descent/back-propagation to train the network

• Spectrograms to sources
 • Inversion using mixture phase
 \[x_i(t) = \text{STFT}^{-1} \left(\frac{X_i}{\sum_i X_i} \odot X \odot e^{i\Phi_m} \right) \text{ for } i \in \{1, 2\} \]
Evaluation

- Two-speaker mixtures
 - Training data ~ 15-20 seconds
 - Test data: Single sentence mixture at 0 dB
 - Evaluated for 10 pairs of speakers

- Evaluation metrics
 - BSS_eval metrics (SDR, SIR, SAR)

- Compared CCAE and RCAE versions
 - NAE models as baseline
 - Parameters
 - Decomposition rank
Separation Results

- NAE vs CCAE vs RCAE
 - Filter width = 8 samples
 - Filter height = 512 samples
- Best performance setting: $K = 80$
Separation Results

- CCAE models are significantly better
 - Inter-quartile range is higher
- Significant improvement in SIR
 - SAR values comparable
Separation Results

- Median performance almost constant
 - CCAE models are robust to choice of decomposition rank
- RCAE models better than NAE models
 - Not as good as CCAE models
Conclusions

• An alternative to convolutive basis decompositions
 • CNN’s allow network to learn spectro-temporal patterns

• CAE models superior to NAE models
 • Significant improvement in separation performance

• Easily generalizable to novel convolutive models and architectures
 • RCAE models and other possible extensions

• Code available on GitHub
 • https://github.com/ycemsubakan/sourceseparation_nn
THANK YOU